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MHD flow in a rectangular duct with 
pairs of conducting and non-conducting walls in 

the presence of a non-uniform magnetic field 
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(Received 10 September 1977 and in revised form 24 May 1979) 

A theoretical and experimental study has been carried out on the flow of a liquid 
metal along a straight rectangular duct, whose pairs of opposite walls are highly 
conducting and insulating, situated in a planar non-uniform magnetic field parallel 
to the conducting walls. Magnitudes of the flux density and mean velocity are taken 
to be such that the Hartmann number M and interaction parameter A’ have rery 
large values and the magnetic Reynolds number is extremely small. 

The theory qualitatively predicts the integral features of the flow, namely the 
distributions along the duct of the potential difference between the conducting walls 
and the pressure. The experimental results indicate that the velocity profile is severely 
distorted by regions of non-uniform magnetic field with fluid moving towards the 
conducting walls; even though these walls are very good conductors the flow behaves 
more like that in a non-conducting duct than that predicted for a duct with perfectly 
conducting side walls. 

1. Introduction 
The main theme of this paper is a theoretical and experimental study of the steady 

flow of a liquid metal along a straight rectangular duct with a pair of non-conducting 
walls and a pair of electrically isolated conducting walls which are parallel to the field 
lines of a planar non-uniform magnetic field (see figure 1). This field comprises two 
adjacent regions of parallel uniform field of strengths B, and &B,, the change being 
affected over a short length of the duct where the field is non-uniform. Magnitudes of 
the mean velocity V and B, are taken to be such that the Hartmrtnn number and 
interaction parameter N are large SO that the flow can be treated as being inviscid 
and inertialess and the magnetic Reynolds number R,, << 1 while the conductance 
ratio 0 = conductance of walls/conductance of flnid (in a plane parallel to B, and 
perpendicular to V )  is large but finite. 

Shercliff (1962, $4 2.3.3 and 3.3.3) examined the effects on the flow of a magnetic 
field whose strength increased from zero to a uniform value along the duct over a short 
length when both N and CD were small. He showed that a recirculating current flow 
is set up in and immediately upstreant and downstream of the non-uniform field region, 
part of it flowing along the conducting wal1s.f Inertia], rather than viscous, stresses 
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FIGURE 1. The experimental duct; a = 34.75mm, ha = 43.65mm ( A  = 1.256), t;a = 6.35mm 
(ti = 0.182), tLa = 9-525mm (t i  = 0*274), L'a = 1440mm (L' = 41.41). Detail of corner A shows 
how bolts were insulated from the conducting wall thereby eliminating short circuit with the other 
conducting wall. End faces of pole pieces of magnet producing a region of high strength uniform 
field are indicated. 

play an important role in determining the behaviour of the fluid. In  the non-uniform 
field region the streamlines move towards the conducting walls regardless of the 
direction of the mean flow such that fractional perturbations of the streamwise 
velocity profile are O(N/10) .  

Apart from the obvious differences in the values of N and @ from those considered 
here, Shercliff's work differs in one other important detail which is that here the 
longitudinal recirculating current flow centred on the non-uniform field region is 
confined to regions where the magnetic field is non-zero. Therefore, fully developed 
flows will not necessarily exist throughout the uniform field regions. 

The analogous problem of a high-N flow proceeding from a straight duct into 8 

diffuser when the field is uniform has been analysed by Walker, Ludford & Hunt 
(1971, 1972) but only for the idealized extreme cases of walls for which @ = 03 and 
@ = 0 respectively. In  the former case there is a constant potential difference between 
the (isolated) perfectly conducting walls, and the corresponding electric field can be 
either greater or less than the induced electric field at different places along the duct. 
Consequently there are, again, longitudinal recirculating currents but now over the 
whole length of the duct leading to both positive and negative pressure gradiente. 
The behaviour of the flow depends on whether (i) only the non-conducting walle 
diverge or (ii) only the conducting walls diverge or (iii) both pairs of walls diverge 
In (i) a small velocity overshoot in the boundary layer of thickness O(aM-d.) (2a being 
the separation of the non-conducting walls in the straight part of the duct) on the 
conducting wall reduces its displacement thickness to zero; the flow in (ii) is much 
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like that in a straight duct (Hunt & Stewartson 1965). Unlike (i) and (ii), the core 
current in (iii) has a component parallel to the conducting wall at the edge of the core. 
To reduce the associated tangential electric field to zero across the boundary layer 
requires a very large O(M4VB0) induced electric field which implies the existence of 
O(M4V) velocities in that layer (and not necessarily in the streamwise direction!). 
When CP = 0 the behaviour of the flow is similar to that in case (iii) when 0 = co but 
currents and pressure gradients are lower by a factor of at least O(M-4).  

Experimental studies of such problems as these are infreqent in the MHD literature 
and, in fact, are difficult to realize in practice. Magnets have a finite length and if, 
88 here, the length of the conducting walls of the duct exceeds the length of the magnet 
the flow will pass through non-uniform field regions upstream and downstream of the 
region of interest between them. The recirculating current flows at  each non-uniform 
field region not only ensure that the potential difference between the conducting walls 
will be lower than expected but also promote distortions to the fully developed flow 
which can persist for substantial distances along the duct. In such cases the velocity 
distributions a t  the entry and exit parts of the duct are relatively unimportant since 
the electric currents there are flowing in regions where B = 0 and their behaviour is 
governed solely by the potential distribution which satisfies Laplace’s equation. On 
the other hand, if the duct lies wholly within the length of the magnet then the details 
of the inlet and outlet flows as well as their positions relative to the ends of the con- 
ducting walls become important. For any flow meeting a magnetic field the entry 
length (i.e. the length of duct required for the fully-developed flow to become estab- 
lished) is O ( l / N @ )  when N = O(1) and 0 is small (Shercliff 1962, $ 3.3.2) and O(a) 
when N + 1 and 0 = co (Walker et al. 1971) but the actual length will depend on 
the form of the flow. Here the flow entered the duct as a central jet with a mean 
velocity of about 50 V just upstream of the ends of the conducting walls. This suggests 
that the entry length would be longer than if, for example, a settling chamber and 
contraction had been inserted upstream of the conducting walls. In addition, the 
flow left the duct via similar pipework. 

The analysis set out in 5 2 presupposes that viscous and inertial effects are negligible, 
i.e. M ,  N % 1 and in the experiments described in $ 3  these conditions are upheld 
over most of the flow. In $ 2.2 the core flow solution of Walker et al. (1971) case (i) 
is generalized to include non-uniform fields and this is discussed in the light of recent 
work by Holroyd & Walker (1978) on the flow in non-conducting ducts. In particular, 
the first-order solution shows that velocity variations are confined to the plane of and 
determined by the magnetic field variations and that there are no longitudinal potential 
gradients and currents in the core. From this solution it is deduced that the usual 
condition for treating walls as perfect conductors, i.e. <D 9 1 must be replaced by a 
stronger condition which is not satisfied by the present duct (and which, indeed, is 
virtually impossible to realize in practice). Once 00 9 <D > 0 the general three- 
dimensional analysis becomes exceedingly complex and here further progress can 
only be made by neglecting the previously important but now insignificant variations 
in the plane of the magnetic field, even so, more simplifying assumptions are necessary 
to make the now two-dimensional analysis tractable. The solution presented in 5 2.3 
derives from the components of Ohm’s law and therefore investigates the relationships 
between the current, potential and velocity distributions. Effectively the electric, or 
kinematic consequences of the flow are explored in marked contrast to the earlier 



338 R. J .  Boiroya 

analysis for (D = 00 when the current and potential distributions have no influence on 
the velocity distribution. Two independent approximations are employed which lead 
to  almost identical answers. Moreover, the solutions are valid even when the field 
strength is small because it is unnecessary to invoke the inertialess and inviscid flow 
conditions. 

The analyses show that an O(aVB,) potential difference along the duct is created 
by the longitudinal current flow(s) along the conducting walls and the presence of a 
significant midstream velocity component in a direction perpendicular to those walls 
is thereby implied. From measurements of the potential distribution between the 
conducting walls described in 8 3 it is inferred that this predicted transverse flow 
exists and is significant. Also described in 9 3 are measurements of distributions along 
the duct of pressure and potential difference between the conducting walls and they 
agree tolerably well with the predicted distributions over the whole length of the 
duct thereby underlining the relative unimportance of M and N .  

Finally, in $ 4 the successes and shortcomings of the work are discussed and its 
significance in relation to the current state of MHD duct flow research is examined. 

2. Analysis 
2.1. Governing equations 

A dimensionless form of the equations and boundary conditions governing the steady 
motion of an isotropic electrically conducting liquid based on V the mean velocity 
of the flow at some point, a half the distance between the non-conducting walls, B, 
the value of  the highest uniform magnetic field strength together with the fluid 
properties density p, conductivity c, viscosity 7 and permeability ,u was derived by 
Holroyd & Walker (1978). When the magnetic Reynolds number 22, = pvaV < 1, 
the equations are 

N-lv.Vv= -Vh+jAB+M-V2v, j = - V # + V A B  (1% b )  

(144.f) V . v  = V . j  = V.B = V A B  = 0, 

where v, h, j, # and B [ = (B,(x, y ) ,  BJx, y ) ,  O)] represent the non-dimensional variables 
velocity, pressure, electric current density, electric potential and magnetic flux density 
respectively and the co-ordinate axes are those defined in figures 1 and 2. M = 
aB, J(vl7)is the Hartmann number and the interaction parameter N = aB,2a/pV = 
M2/R where R = pVu/7 is the Reynolds number of the flow. It will be assumed 
that the values of M and N are sufficiently large for viscous and inertial effects to be 
ignored except in extremely thin boundary layers on the walls and in regions where 
B N 0 so that ( l a )  reduces to 

The conductance ratio Q, = awt/ga where uw and t represent the conductivity and 
thickness of the conducting walls. 

Vh = j n B .  (1g) 

2.2. Analysi8 of theJlow when @ = 00 (perfectly conducting walls) 

Following the method of analysis employed by Walker et al. (1971) the flow will be 
assumed to have the usual rbgimes typical of high-M flows, namely Hartmann layers 
of thickness O(M-1) on the non-conducting walls, boundary layers of thickness 
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O(M-4) on the conducting walls and a central inviscid core flow where the variables 
may be expressed as power series in M-4, e.g. v = v(O)+ Jl-h@+ . . . . 

The two-dimensional form of the imposed magnetic field allows it to be defined in 
terms of A ( r ,  y), the single z component of a magnetic vector potential, and Y(z, y), 
a magnetic scalar potential, i.e. B = V A (0, 0, A )  = V@. Curves defined by A = con- 
stant are magnetic field lines which together with curves Y = constant form a two- 
dimensional orthogonal curvilinear co-ordinate system. 

In terms of this co-ordinate system (1  q) may be written as 

(Bah(OpA, Bah(o)/aY, a h ( 0 ) p )  = ( j ; O )  B, 0, - js) B) .  

The second component of this shows that h(0) = h(O)(A, z ) ,  i.e. the pressure is constant 
dong a field line, while the other components relate the current density components 
~ 2 )  and j:") to the field strength and partial differentials of h(0). Using these latter 
expressions in conjunction with ( 1  d )  enables an expression for j$) to be found SO that 
the three current density components may be written as 

(2b)  is, in fact, a simpler form of a general expression deduced by Kulikovskii (1968, 
aquation (1.8)). A t  a non-conducting wall, defined as 

Y = F ( A ,  z ) ,  jg) = sgn (A. B) M-'(V A v(O)) 

(where fi is the unit normal to the wall directed into the fluid) provided there is a 
significant component of B normal to the wall, i.e. fi . B = O(1) (Hunt & Ludford 
W8) .  Here this may be written as 

&the flow is confined between non-conducting walls denoted as Fl and F2 then by 
ambining (2) and (3) it  may be shown that 

m that 

&hichimplies that the core currents flow on surfaces defined by 

h(o) = h(o) ( 1; R - q y )  

B-2d'r = constant. J: 
j N ~ t e  that in Holroyd & Walker (1978, §, 3.1) physical arguments are used to show 
that this result is true for a three-dimensional non-uniform case provided I j 1 4 1 V] .) 
In the present case Fl and F2 define two parallel planes and so the z dependence is 
lost. Consequently the current flow will be across the duct in the z direction since 

= 0 and therefore j?) = j$) = 0. Furthermore,j;"' = dh(O)/dA is constant along 
B field line. 

The absence of core currents a t  the edge of the core parallel to the conducting walls 
eliminates the possibility of a longitudinal electric field component there. This is 
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important because without such a field there can be no large field nmmal to the 
conducting wall and hence no high velocity flow in the boundary layer there. From 
( l b )  aqYo)/a$ = 0 so that qV0) = qY0)(A,z) and, in line with the above arguments, 
satisfies +(O)(A, z = _+ A )  = _+ constant at the perfectly conducting walls. For con- 
sistency with the uniform field case where q k c z  (Hunt & Stewartson 1965) and 
A = -By X, it  is sufficient to take qY0) = z 4 5 / 2 A  where A$ is the potential difference 
between the conducting walls. 

Since #(O) is independent of A i t  follows from (1 b )  that via) = a$(O)/aA = 0. The two 
remaining non-zero velocity components may now be derived from a stream function 
O(x, y) as v(O) = V A (0, 0 , O )  in which case the flow rate along the duct a t  any point 
is given by 

whiIe at the edge of the core adjacent to the non-conducting walls 

@(Fl), O(F,) = constant (5) 

since v(O) .  A = 0 there. The only non-zero component of (1  b) can now be written as 

where s is the distance measured along a field line (so that &,h = BSs). By integrating 
(6) along a field line and using (4) and (5) i t  may be shown that 

where 8, is the total length of a field line between the non-conducting walls. Equation 
(7) shows that 0, and hence the velocity distribution, is completely determined by the 
magnetic field only and in particular by integrals along field lines of the form I B-lds. 
Holroyd & Walker (1978) showed that in variable-area non-conducting ducts the 

flow follows equipotential surfaces defined by B-lds = constant but clearly this is 

not the case here even though the flow is confined between non-conducting walls. 
This apparent inconsistency stems from the different magnitudes of the current flow 
in the two cases; here j, v and 9 are all O( 1) while in Holroyd & Walker’s case j = O(M-4) 
while v and g5 were O( 1). Consequently different solutions arise in the two cases. On 
the other hand, if the perfectly conducting walls were replaced by insulating wells 
then j would be O(M-t )  but the equipotential surfaces could not be defined because 
8, and B are independent of z. In  such cases the only possible core flow is v = O(M-4) 
at most which implies that the flow is carried in the boundary layer on the walls 
parallel to B (see, for example, Walker et aE. 1972). 

If a three-dimensional non-uniform field is considered (rather than the present 
two-dimensional one) then the conducting walls would not necessarily be parallel to 
the field lines everywhere. In such cases there would be a radically different internal 
flow structure comprising several distinct core flow regions separated by shear layers 
of thickness O(M-4) centred on those field lines passing through the corners of the 
duct (Hunt & Shercliff 197 1). It should also be borne in mind that if the non-conducting 

s,” 
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walls are parallel but not at right angles to the field lines then another solution may 
have to be sought as in the equivalent uniform field case (Shercliff 1975). 

Ludford & Walker ( 1980) have derived the two partial-differential equations 
governing the flow in the boundary layers on the conducting walls but solutions, 
which depend on the form of the magnetic field, have not been sought. However, if 
B = (0, 1,Ci) they reduce to the governing equations for the corresponding boundary 
layer in the uniform field case (Walker et al. 1971) which suggests that there will be 
no major differences between the flows in the two cases. 

The potential difference between the conducting walls may be found by integrating 
(1 b)  over their area A,, i.e. 

Ao 

The first integral on the right-hand side represents the net current flow between the 
conducting walls and its value depends on the electrical connexion between them; 
if they are electrically isolated from each other its value is zero. The second integral 
can be evaluated by using (7). However, the value of A$ given by (8) can only be 
approximately true for several reasons. If B =# 0 near the ends of the conducting walls 
then the flows of current and fluid there, as well as in regions where B is so small 
that the conditions M ,  N 9 1 are not satisfied, will not be given by (6) and (7) but 
will undoubtedly have a complex three-dimensional form. However, where B = 0 the 
first integral in (8) will still be valid (if evaluated a t  z = _+ A )  while the second will be 
zero. 

When the conducting walls are electrically isolated from each other systems of 
recirculating currents on surfaces perpendicular both to these walls and the field lines 
are set up. Where A4/2A < vz B, (i.e. regions of maximum velocity and flux density) 
jio) will flow so as to induce a braking force on the flow; this effect is reversed where 
A4/2A > v, B,. Between such regions the conducting walls act as short circuits for 
the current. When the currents flow in regions where B = 0 the fluid acts as a short 
circuit but does not feel any electromagnetic force. 

So far the term 'perfectly-conducting wall' has been loosely defined as a wall for 
which 0 9 1. A more precise definition may be derived from the fact that the potential 
drop, a VB08$, along these walls due to the longitudinal current flow in them should 
be very small; in non-dimensional terms 84 < 1. Here, a typical length scale for the 
recirculating currents is the length of the duct L and so it follows from (1 b )  and (1 d )  
that 

84 = (fl/%J { ( L / a ) A O ) / ( W  = w-+%.) /a t  

(sincejLO) = O(1)). Therefore, if 84 < 1 

cru, at/gL2 = @a2/L2 = (ctU t/L)/(crL/a) B 1 

and this may be interpreted as (conductance along duct walls)/(conductance cIcros8 
duct in fluid) 9 1 .  Clearly this is a much stricter condition than @ 3 1 and is difficult, 
if not impossible, to realize in practice. Since the present' duct does not satisfy this 
condition, the flow in it must be re-analysed to take int'o account the finite conductivity 
of its conducting walls. 
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2.3. Analysis of thejow when the conducting walls haveJinite conductivity 

Although a general three-dimensional analysis of this problem is complex it is possible 
to predict some of the integral features of the flow in a relatively straightforward 
manner by making several simplifying assumptions. The flow may reasonably be 
expected to become more like that in a non-conducting rectangular duct (see Walker 
et ab. 1972); Kit et al. (1970) as CD decreases. Here, since the walls are still highly con- 
ducting, it is probable that core velocity gradients will remain O( 1) while vy < us, v, 
(when CD = 00 i t  can be deduced from (7) that lvy1 < 0.035 for the field used in the follow- 
ing experiments). At the non-conducting walls the relevant boundary condition 
implies that j, 4 j,, j,. The three components of (1 b )  now reduce to 

-t V, B,. p a ,  b, C) 

To further simplify matters it will be assumed that there is still no O(1) change in 4 
across the boundary layers on the conducting walls and that, as in Shercliff ’s low-N 
analysis, B, can be neglected. In  addition, by inspecting the components of the field 
used here shown in figure 2 (plotted, for convenience, as 2hBU and 2hBJ it  can be 
seen that variations of B, with y are unimportant, i.e. B, = B,(x). In  marked contrast 
with the analysis for perfectly conducting walls where the problem was reduced to 
two-dimensions in the Oxy plane, here all dependence of y has been eliminated leaving 
the problem two-dimensional in the 0 x 2  plane. 

Further progress can be made in two ways by making different approximations. 
Analysis (i). Let j, = 0 so that j, = j,(z) and take the conducting walls to have 

equal non-dimensional thickness t‘ Q 1 thereby allowing the ‘ thin-walled ’ boundary 
condition to be applied [see Holroyd & Walker 1978, equation (2.4c)l. Here it may 
be written as 

Integrating (9c) over the cross-section of the duct yields 

j, = - aq5/& - V, By, 0 = - a#/@ + V, B,, j, = - 

j, = - CDP(*Agl)/axs. (10) 

(11) 4hj,(x) = - 2Aq5(x) + 4hBy(x). 

Combining (10) and (1 1) gives a governing equation for A#(x) ,  namely 

whose solution is completed by two boundary conditions which are that the longi- 
tudinal current flow in the conducting walls which is proportional to a(Aq5)/ax is zero 
a t  each end of those walls. 

Note that the solution to (12) does not show how gl varies between the conducting 
walls while Aq5 itself is independent of the velocity distribution. 

Analysis (ii). Let v, = 0 so that v, = 1 and approximate the form of B,(x) by step 
functions. In  each range of x for which B, = constant the equations governing the 
potential distribution in the fluid (q5) and walls (q5w+ at z = h and q5w- at z = - A )  
may be derived by differentiating (Qa and 9c) with respect to x and z respectively, 
adding them and using (1  d )  to give 
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In either conducting wall j,, = - uf8q5,/8z where a' = U,/Q and in the fluid 
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j, = -8(q5,-zBy)/8z. 

At z = & A the expressions for q5/, q5w and j,, j,, may be equated (Shercliff 1966, $5 .8 ,  
6.9) while since no current leaves or enters the duct at  the outer faces of the conducting 
walls then j,, = 0 at z = h + t i  and - h - t; (ti and t; are the non-dimensional thickness 
of these walls). The solution to (13) satisfying these conditions is 

#(x, 2) = By!@) + q5w+(x, A + t; > z > A )  + $ / ( X ,  > 121 1 
+ q5,-(x, - h > z > - h - t;),  (14a) 

for z > A, 

where (14b) 
- A  for z <  - A ,  

( 1 4 4  
cos k ( h + t i - z )  (Pk sinh kx + Qk cosh kx) ,  

' w +  = ' sin kh cos kt; + a' cos kA sin kt; and 

q5f = C (sin kz + R, cos kz) ( P k  sinh kx + Qk cosh kx) ,  (144 

(144 
cos k ( A  +t i  + z )  (P, sinh kx + Qk cosh kx) ,  ',- = ' sin kh cos kti + p' cos kh sin ktk 

and are zero outside the ranges of z indicated in (14a). 

cos kh cos kt; - u' sin kh sin kt; R -  = -  
- sin kA cos kt; + u' cos kh sin kt; 

cos kh cos kti - u' sin kh sin kti 
sin kh cos kti + u' cos kh sin kt; 

which can only be true if 

tan 2kh = a'(tan kt; + tan k t ; ) / ( d 2  tan kt; tan kti - 1) .  (15) 

The summations in (14c, d ,  e )  include all the positive eigenvalues, k, of (15). 
There are different values of Pk and Qk for every range of x over which Bu = constant. 

A t  a station where there is discontinuous change in B J x ) ,  say at  x = b, the values of 
Pk and Qk for x < b and x > b for each value of k are related to each other through two 
equations expressing continuity at x = b for all z of j, (proportional to 8q5/8x) and 
8$/8z. These are 

( 1 6 4  

and 

where 

(Pk+ -Pc) cosh kb -I- (Qk+ - Q g )  sinh kb = 0 

(Pk+ -P;) sinh kb + (Qk+ - Q;) cosh kb = - 2(B,+ - B;) sin kh/k2Fk, (16b)  

+ A( 1 + RE) 
u'(kt; -sin kt; cos kti)  

F -  - 2k(sin kh cos kt; + u' cos kh sin k Q 2  

(17) 
1 u'( kti - sin kt: COB kt;) 

+- 2k ( I  -RE) sin 2kh -t- 2k{sin kh cos kt; + u' cos kh sin kt;}* 

and the superscripts + and - indicate values for x > b and x a b. The reasons for 
using continuity of rather than q5 and the derivation of (17) are given in the 
appendix. If there are n discontinuous changes in BJx) along the duct then for each 
value of k there will be n pairs of the equations (16) but ( n  + 1) each of the unknowns 
p k  and Qk. The two extra equations required to complete the solution follow from the 
condition that j, = 0 and hence Pk cosh kx + Qk sinh kx = 0 at each end of the duct. 
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It may be shown that when ti = ti = t‘ and kt’ < 1 then the transcendental equation 
(15) and the complete solution reduces to that obtained by Vasil’ev & Lavret’ev 
(1969). 

Comparison of solutions from analyses (i) and (ii) 

For this purpose the magnetic field described in figure 2 may be represented simply 
as BJz)  = 8(z- 14-4) - @(s+ 0-6) - +(z- 17.6) where ~ ( f )  = 1 for 6 > 0 and is zero 
otherwise. Let the ends of the conducting walls be at 2 = 21-8 and z = - 19.6. The 
relevant non-dimensional parameters of the present duct are h = 1.256, ti = 0.183 = 
t;/l.5 and g’ = 56.8 and in analysis (i) t’ = +(t; + t i )  so that 

Calculations of A$, the potential difference between the conducting walls, by the 
two analyses differ by no more than 0.15 % of their mean value anywhere along the 
duct while analysis (ii) indicates that the potential difference between the inner and 
outer faces of either conducting wall is less than O.O015A$. An even more significant 
result is obtained by comparing the potential distribution across the duct, $(z )  
calculated from analysis (ii) with an assumed linear distribution calculated from 
analysis (i), namely zA#/2h (which corresponds to a uniform velocity profile v,(z) = 1). 
For any position along the duct 

maximum value of I$@) -zA$/2h[ < 0.0075A$ 

and this has two important implications, namely (i) j, in the fluid has negligible effect 
on the potential distribution and so (ii) if the slope a$/& of a measured potential 
distribution varies with x then the variation can be attributed to a non-uniform 
velocity profile in accordance with (9c). 

These arguments show that results derived from analysis (i) are quite satisfactory 
for this work. At smaller values of d,  analysis (ii) would be more useful. 

= dt ’ .  

3. Experimental work 
3.1. Apparatus 

Experiments using mercury flowing along the duct shown in figure 1 situated in the 
field whose principal components are plotted, for convenience, as 2hB$/B0 and 
2hB,*/B0, (B, = 0) in figure 2 were carried out to satisfy two objectives, namely (i) 
to verify the theoretical predictions of the potential difference between the conducting 
walls and the pressure distribution along the duct and (ii) to elucidate the internal 
structure of the flow by measurement of the potential distribution inside the duct. 
(Unfortunately, lack of time in an experimental programme of which these experi- 
ments were a minor part precluded the use of hot film probes to measure velocity 
distributions.) 

The electromagnet, flow circuit, manometer system, probe for measuring potential 
distributions inside the duct and trolley for supporting the duct and allowing it to be 
moved longitudinally relative to the magnet are described in Holroyd (1976, 1979). 

Basic details of the duct are shown in figure 1. Of the 1.44 m ( = 41.41a) long copper 
walls, one was 6.35 mm thick and the other 9.525 mm in order to accommodate the 
bolts needed to affix the 15 pressure taps along its length. Although this apparently 
destroyed the symmetry of the duct the analysis and results showed that it was not sig- 
nificant. These walls were held 87.3 mm ( = 1.256 x 2a) apart by PVC (non-conducting) 
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walls and clamped together by 42 stainless-steel bolts passing through the PVC 
walls. A neoprene gasket at the PVC/copper wall junctions prevented leaks and the 
copper walls were electrically isolated from each other by insulating the bolts from 
one wall by nylon bushes (see corner detail in figure 1). About two-thirds of the way 
along the duct (from the flow inlet) provision was made for inserting a probe into the 
flow. A circular copper disk fitted into a mating hole in the thicker copper wall, the 
seal being effected by an O-ring, and the probe stem passed through it at  a point near 
its periphery. By rotating the disk the axis of the probe could be moved from near 
one PVC wall to half-way between them. Motion of the probe at right angles to the 
conducting walls (i.e. parallel to the z axis) was achieved by a simple nut and screw 
traversing gear mounted on the disk. 

The general form of the magnetic field is shown in figure 2. Over most of the first 
450mm ( =  12.95~) of the magnet the flux density, B,* = B,, was uniform with a 
maximum value of 0~56T while over the remaining 556 mm ( = 16a) 23; = +Bo. Thus 
the maximum Hartmann number was 505. At the highest flow rate the Reynolds 
number was 7500. 

3.2. Variation of the potential difference between the conducting walls, A$* 
In figure 2 are shown measurements of A$* along the duct plotted as Aq5 = A$*/aVB, 
for three different positions of the duct relative to the magnetic field to see how this 
affected the A$ distribution and hence the current flow along and across the duct 
and hence ( 9  3.4) the pressure distribution. Two extreme positions left a large portion 
of the duct either upstream or downstream of the magnet so that the flow there was 
not subjected to the influence of electromagnetic forces since B = 0; the third position 
was approximately midway between the others. Also shown in figure 2 are (i) the 
appropriate theoretical distributions derived from (12) with B,(x) given by the 
measured values of B j  on the centre-line of the air gap of the magnet and an assumed 
linear variation between adjacent points and (ii) the distribution of 2hB, which is 
numerically equal to 2h x mean value of induced electric field. 

It can be seen from figure 2 that there is close agreement between the measured and 
predicted distributions. The obvious discrepancies occur in the high field strength 
region where the experimental values are 5 %  lower than expected but there are 
fractional differences of simiIar magnitude but opposite sign near the ends of the duct 
when they are remote from the magnet. These errors are probably due to the longi- 
tudinal recirculating current flows which were neglected in analysis (i). For example, 
from the mid-section of the high field strength region there will be current flows, j , ,  
both upstream and downstream due to the potential gradients in the core. These 
currents will tend to augment the current flow, j , ,  by an amount say, Aj,, near z = 0. 
To satisfy continuity (1 d )  Aj, N aj,/ax while from (1 b )  it follows that 

aj&x = - a2$/ax2 - a@, B,)/ax. 

From these two relationships and (10) it  follows that Ajc _N jJCD - a(w, B,)/ax. There- 
fore, the magnitude of the term 4Aj, in (1 1) could be increased by a factor of (1 + @-I) 

and it follows from that same equation that A$ will be increased or decreased by the 
same factor depending upon whether j, is greater or less than zero. Since CD -N 13 here 
such errors in Aq5 are consistent with the observed fractional discrepancies over 
-13 < x < Owherej, > Oand -34 < x < -13 and 17 < x < 28 wherej, < 0. So far 
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the %rm a(v,B,)/ax has not been considered; the results of Shercliff (1962) and Kit 
el  d. (1970) suggest that it will only be important where B, is varying, Its magnitude 
can be estimated as a2(Aq5)/ax* in such regions and here an upper limit of about 0.05 
can be deduced from the distributions in figure 2. Consequently it does not significantly 
effect the argument. 

To see how A$* varied with M and N its value was recorded a t  x * / a  = - 5439 with 
the duct in the central of the three positions described above for various field strengths 
end flow rates. At this position the current flow along the walls is zero since 

a(A+)/ax = 0. 

Plots of A$* against mean velocity V were linear with slopes proportional to B, 
(within experimental error) but after extrapolation to V = 0 the value of A$* was 
not zero but differed by no more than 27pV ( = 0.3 yo of the maximum measured value 
of A$*). It is quite possible that this offset was due to the thermal e.m.f. created at, the 
mercury-copper interfaces. During a 2 h experiment both the mercury and air tem- 
peratures could rise, typical values being 8 and 3 K respectively. Therefore, the 
temperatures of the mercury and copper were not necessarily identical - a difference 
of 2 K  would account for the aforementioned offset in A$* (see Kaye 6 Laby 1973, 
$1.5). In this experiment 

Aq.5 = Aq5*/aVBo = 2.093 for 90 < M c 505 and 1.5 < AT < 3500. 

3.3. Potential distributions across the duct in the Puid 
These distributions were made by traversing the potential probe over the centre-plane 
y = 0 of the duct. The design of the probe limited the z-wise range of motion to about 
60% of the duct width from the thinner of the conducting walls while the design of 
the duct limited the position of the probe tip to 0.926 m = 26.65a from the upstream 
end of the conducting walls. This latter fact implies that measurements from a traverse 
relate to that position of the duct relative to the magnetic field and no other - results 
from a traverse with the probe tip displaced a distance x' nearer to the upstream end 
of the duct and the duct moved an equal distance downstream would not necessarily 
be the same. However, from figure 2 it can be seen that provided there is no excessive 
length of duct upstream or downstream of the magnet then over the central 75% 
or so of the magnetic field Aq.5 is fairly insensitive to the actual position of the duct. 
This suggests that the potential distribution in the fluid might be so too. 

Distributions of the potential q.5* a t  nine different positions with respect to the 
magnetic field in the range -7.3 c x * / a  c 13.2 (x* = position of probe tip) are 
summarized in figure 3. The data is plotted as q.5 = q.5*/aVBo and for each set of results 
a straight line indicates the theoretical distribution of q.5 for a uniform velocity profile 
while the value quoted at the wall is &A$. Clearly, though, the measured distributions 
are nonlinear; at x * / a  = - 7.28 the potential gradient a$/& near the centre of the 
duct is less than the indicated linear distribution but as the conducting wall is ap- 
proached this situation is reversed. Now, if, as was proposed in $2, aq.5/az represents 
the velocity profile v,(z) to a good approximation, then at x * / a  = - 7.28 the velocity 
near the wall is about three times larger than that at the centre of the duct. On moving 
downstream to x * / a  = - 1-44 a nearly uniform velocity profile may be inferred fram 
the results but just a little further downstream at z * / a  = 0 large velocities near the 
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conducting walls are again indicated. A t  x*/a = 4.39 the velocity profile again appears 
to be uniform and remains so for the other readings. 

The complementary function part of the solution to (12) suggests that the current 
flows in the conducting walls due to a sudden change in field strength near x = xo 
decay m exp { - x'/(ACD)*} M exp ( - tx') here where x' = x - xo. If it  is assumed that 
the inferred non-uniform velocity profile there decays to its appropriate fully- 
developed flow form in the same manner then it may be deduced from the above 
results for x/a* < 0 that where the flow first meets the magnetic field the velocity 
near a conducting wall (i.e. near z* = Aa) could be larger than that a t  z* = 0 by a 
factor of about 20 ( = 5 ( M ) )  here!). By the time the flow reaches the next change in 
field strength the velocity profile is nearly uniform but it is then similarly distorted 
again, although to a lesser extent, before finally becoming uniform after a shorter 
distance. 

Such velocity profiles are most unlike those predicted for a duct with perfectly 
conducting walls. In  fact, the behaviour of the flow is more like that found by Kit 
et al. (1970) in an insulating rectangular duct a t  low values of N and predicted by 
Shercliff (1962, Q 3.3.3), again for low values of N ,  for ducts whose conducting walls 
have low values of 0, but here the differences in velocity across the duct are far greater. 
They also persist for a distance of 14a which is much greater than the aR/CDM2 
predicted by Shercliff (1962, Q 3.3.2; low N and C D )  and the aN predicted by Walker 
eta,?. (1971; N 

Another feature of the potential distributions shown in figure 3 is that they vary 
with M and N .  Although the amount of data does not allow any definite conclusions 
to be reached, it would appear that for a given value of M the non-uniform velocity 
profiles persist over longer distances for smaller values of N (and hence larger values 
of R ) .  In  some cases, particularly at x*/a = 7.35 and x*/a = 9.68 there is evidence 
of a non-symmetric potential distribution about the centre of the duct as M and N 
vary which presumably is related to the non-symmetry of the duct. 

1, 0 = co). 

3.4. Pressure distributions along the duct 

Distributions of the pressure p along the duct measured at the mid-point of the 
thicker conducting wall, i.e. y = 0, z = - A ,  are plotted in terms of 

h = p/pVzN = p/vaVB,2 

in figure 4 for three different positions of the duct relative to the magnetic field similar 
to those employed when measuring A+* (see Q 3.2). In each case the corresponding 

theoretical distribution was deduced from (1 9) as h = constant - j, B, dx' with j, 

given by (1 I )  and the solution to (12). To obtain the value of the constant of integration 
a tracing of the theoretical curve was superposed on a plot of the experimental points 
and their relative positions varied until optimum agreement was observed. The 
middle theoretical distribution in figure 4 serves for two sets of results with the duct 
in slightly different positions except over short lengths near where the flow enters 
and leaves the duct. 

The shapes of these distributions are readily inferred from distributions of A$ like 

LX 
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FIUURE 4. Predicted (curves) and measured (points) pressure distributions dong duot. Distri- 
bution of By = B,*/Bo at y = z = Oplotted in arbitrary units aa --o--. The ends of  the conducting 
walls am indicated by short vertical lines on the ends of the curves. Near %*/a = O+ on the lower 
distribution, 8 steady reeding could not be obtained; the distance between the pair of points there 
indicates the renge of values measured. ( M ,  N ,  R): .----., (509, 47.9, 5406); 0-0, (508, 
49*7,6188); 0-0, (506,48*4,5277); lJ---n, (506,46*4,6606). 

those shown in figure 2. Where 2AB, > A$ the pressure gradient is negative and where 
2M3, .c A# it is positive. 

In  all cases it is noticeable that the largest differences between the measured and 
theoretical distributions occur a t  the inlet end of the duct. Because the fluid entered 
the duct as a central jet the flow in the entry region was inevitably unsteady as were 
the levels of the liquid in the arms of the manometer and so it was impossible to obtain 
many readings in that region. Even when theinlet wasonly 3.5aupstream of the magnet, 
readings were still difficult to obtain until the flow had travelled a distance of about 
10a (see lower distribution, figure 4). In  the other two cases the entry length appears 
to be slightly shorter presumably because over the length of duct upstream of the 
magnet viscous stresses have reduced the velocity of the jet so that the velocity profile 
is almost uniform whereas in the third case some distance is required for electro- 
m&gnetic forces to modify the velocity distribution. However, these entry lengths are 
consistent with those deduced in 9 3.3. 

Finally, inspection of figure 4 shows that aa the length of duct upstream of the 
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magnet is decreased the net pressure drop along it decreases. This is because some of 
the current which would flow across the duct in the negative z direction upstream of 
the magnet where B = 0 has to return across the duct in the low field strength region. 
Therefore the total accelerating force on the fluid increases and hence the total pressure 
drop along the duct decreases. 

4. Conclusions 
The results of this study illustrate the gulf between the idealized MHD problems 

which have been analysed in great detail and the practical MHD problems which the 
results of the former purport to represent. What at first sight appear to be insignificant 
departures from an ideal can, in fact, lead to gross differences between predicted and 
observed behaviour. 

Here in 5 2.3 an approximate theory has been advanced to allow, principally, the 
effects of highly - but not perfectly - conducting walls. The experimental results 
described in 5 3 suggests that this theory gives a reasonable description of the integral 
features of the flow and shows that the predictions of the analysis for perfectly con- 
ducting walls given in $ 2.2 are misleading. However, the highly conducting wall 
theory cannot describe the internal structure of the flow - that  can only be inferred 
from the experimental results. Clearly there is room for further experimental and 
analytical study of this type of problem. 

Ideally an analysis is required which caters not only for the present duct with 
highly, yet finitely, conducting side walls but also for the extreme cases of non- 
conducting and perfectly conducting walls and all intermediate types. Important 
factors which must be considered are the form of the magnetic field and hence the 
variations in M and N along the duct, the length of the conducting walls and any 
electrical contact between them and, possibly the flows upstream and downstream 
of the conducting walls. The effect of a three-dimensional non-uniform field and the 
analogous flows in variable area ducts are also worthy of attention. 

Future related experimental investigations must include measurements of velocity 
profiles (by, for example, hot-film probes) particularly near the conducting walls, to 
establish how well those qualitative profiles derived from the electric potential 
distributions represent the actual flow and to form a reliable foundation for explaining 
its behaviour. 

Appendix 
The matching condition on the potential distribution, 4, at x = b is equivalent to 

representing the function f ( z )  defined in ( 1 4 b )  by an infinite series of the function 
#w+, gf and 9,- defined by (14c-e) (with Pk cosh kx + Qk sinh kx replaced by a constant 
coefficient, say Ak) over the range -h-t ,  < z < h+t , .  However the functions 
(14c)- (14e)  are not truly orthogonal over this interval but their first differentials are 
orthogonal with respect to 

where m is a root of (15). In the notation of (14a), 

Y, = cos mz - R,,, sin mz, 

Y J Z )  =Y,,,+(h+ti > z > h)+Yf(h  > ~ 2 1 ) + Y w - ( - h  > z > - A - t k ) ,  

YW+ = a'sinm(A+t;-z)/(sinmh cosmt~+a'cosmhsinmt~), 

Y,- = - CT' sin m(h + t; + z)/(sin mh cos mt; + u' cos mh sin mt;), 
12 PLM 96 
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so that 

where dmk is the Kronecker delta and Fk is given by (1 7). It is therefore possible to 
represent f’(z) by an infinite series of the functions &+, 4; and &-; integration of 
this latter series yields f (z )  less an arbitrary constant. 

In  fact it  is possible to find a function $m ( = ITm dz) for which #k $, dz is zero 
unless m = k but the resulting coefficients of the terms in the series do not satisfy 
Parseval’s condition for the series to be a complete representation of f(z) over the 
interval concerned nor do the terms reduce to those obtained by Vasil’ev & Lavret’ev 
when kt’ < 1. 
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